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Abstract
Starting from a prescribed Hamiltonian, we construct a non-Markovian
evolution equation for a non-relativistic quantum system that exchanges energy
with a large reservoir. In order to create sufficient mathematical freedom, the
density operator is replaced by a more flexible entity that depends on two times.
If these times are chosen equal, the density operator is recovered. In deriving
a non-Markovian integral equation for our bitemporal operator, it is assumed
that initially system and reservoir are completely uncorrelated. Furthermore, in
employing Wick’s theorem for factorization of reservoir correlation functions,
only those Wick contractions between reservoir potentials are retained that
belong to a generalized nearest-neighbour class. The latter is established
by subjecting the set of plain nearest-neighbour contractions to any cyclic
permutation of reservoir potentials. Through generalizing the notion of nearest-
neighbour contraction, it is ensured that the trace of the density operator is
conserved. By construction, our bitemporal evolution equation agrees with
the Kraus map for quantum dissipation. Moreover, a sound Markovian limit
exists that reproduces the complete van Hove–Davies theory. By making
use of a rotating-wave approximation and Laplace transformation, the density
operator of a damped N-level atom can be computed. For large times and
moderate coupling to the reservoir, the atom ends up near the state of thermal
equilibrium. At zero temperature, our non-Markovian integral equation gives
an exact solution for the atomic density operator.

PACS numbers: 42.50.−p, 03.65.−w, 05.30.−d

0305-4470/06/4614511+18$30.00 © 2006 IOP Publishing Ltd Printed in the UK 14511

http://dx.doi.org/10.1088/0305-4470/39/46/018
mailto:vanwonderen@planet.nl
http://stacks.iop.org/JPhysA/39/14511


14512 A J van Wonderen and K Lendi

1. Introduction

Dissipation of energy is omnipresent, not only in our everyday life, but also in the world
of quantum physics. This rather loose observation acquired a somewhat urgent status at the
beginning of the 1960s. Due to the arrival of the laser, a sudden need arose for accurate and
comprehensive descriptions of lossy quantum systems. As a result, the theory of open quantum
systems blossomed out into a major research area of statistical mechanics and quantum optics.
During the 1970s, our knowledge of Markovian quantum processes almost reached a state
of perfection. To date, the field is very much alive. Recent years saw publication of some
excellent textbooks on the theory of open quantum systems and related topics [1–5].

A great number of workers tried to transfer the Markovian successes of the 1970s to
the case of non-Markovian quantum dynamics. Unfortunately, this proved to be a difficult
enterprise. Therefore, one has to admit that, in spite of a large demand [6–11], our
understanding of dissipative quantum processes is still not mature. One of the main open
questions is how to derive a non-Markovian evolution equation of reasonable complexity
from a prescribed Hamiltonian. Of course, the corresponding density operator should respect
all basic constraints. These are conservation of trace, agreement with the Kraus map for
quantum dissipation [12], and existence of a sound Markovian limit reproducing the complete
van Hove–Davies theory [13, 14]. The goal of the present treatment is to come up with an
analytically solvable evolution equation obeying all of the afore-mentioned requirements.

Over the years, an impressive amount of expertise was collected on virtues and vices of
non-Markovian master equations for density operators. This judgement did not encourage
us to undertake any further research on master equations containing one single time variable.
Instead, we gradually came to the conviction that a density operator does not constitute the
natural quantity for capturing non-Markovian processes. In order to increase mathematical
freedom, we decided to work with a novel and more flexible entity. It depends on two times t
and t ′, and delivers the density operator if the choice t = t ′ is made. This so-called bitemporal
operator permits one to set up a perturbation theory that is free of any commutators. In doing
so, one makes sure from the very outset that the non-Markovian evolution of the ensuing
density operator is governed by a Kraus map. In a recent letter, the above ideas were applied
to the case of a damped two-level atom [15].

Our paper is organized as follows. In section 2 an evolution equation for the bitemporal
operator is derived. It is assumed that initially the damped system is not entangled with the
surroundings. Furthermore, in factorizing correlation functions with the help of Wick’s
theorem, only Wick contractions of a generalized nearest-neighbour type are taken into
account. The bitemporal operator gives rise to a physically acceptable density operator,
because all necessary conditions are fulfilled. This is shown in section 3. Explicit solutions
for the density operator of a two-level and three-level atom are derived on the basis of Laplace
transformation. In section 4 the temperature is kept at absolute zero, but in section 5 the atom
is immersed in a thermal bath. The rotating-wave approximation underlies all of our solutions.
As for exactly solvable models [16], in performing Laplace backtransformation one has to
deal with branch cuts. Section 6 contains a discussion of all approximations that are needed
in order to arrive at our main result, the non-Markovian evolution equation (12).

2. Bitemporal approach

Starting from the level of unitary dynamics, we wish to evaluate the density operator ρS(t)

describing the evolution in time t of a non-relativistic quantum system S that can exchange
energy with a large reservoir R. Throughout this treatment, we assume that at time t = 0
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system and reservoir are completely uncorrelated, S being in the state ρS and R being in the
state ρR . As we shall exclusively work in the interaction picture, we write the Hamiltonian
H of the composite SR as a sum H0 + λH1 of a free part H0 and an interaction part H1. The
dimensionless coupling parameter λ is real. The free Hamiltonian can be expressed as a sum
HS ⊗ 1R + 1S ⊗ HR of a part HS pertaining to the system and a part HR pertaining to the
reservoir. In the absence of classical fields all of our Hamiltonians do not depend on time. For
notational convenience, we scale each Hamiltonian with Planck’s constant.

Given the foregoing assumptions and conventions, the evolution law for the density
operator can be cast into the form

ρS(t) = ξ(t, t). (1)

On the right-hand side the definition

ξ(t, t ′) = TrR[eiH0t e−iHtρS ⊗ ρR eiHt ′ e−iH0t
′
] (2)

is employed. We aim at constructing a linear integral equation for the bitemporal operator
ξ(t, t ′).

If the Hilbert space of S is separable, the interaction Hamiltonian can be factorized. The
representation

H1 =
∑

α

Vα ⊗ Uα =
∑

α

V †
α ⊗ U †

α (3)

is found. In the interaction picture the system potential Vα and the reservoir potential Uα

evolve as

Vα(t) = eiHStVα e−iHSt Uα(t) = eiHRtUα e−iHRt . (4)

The perturbative expansion for the unitary operators governing the evolution of ξ(t, t ′) reads
then [17]

eiH0t e−iHt = 1 +
∞∑

n=1

∑
α1α2···αn

(−iλ)n
∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtn

×Vα1(t1)Vα2(t2) · · · Vαn
(tn) ⊗ Uα1(t1)Uα2(t2) · · · Uαn

(tn). (5)

Upon substituting (5) into (2), we meet the m-point reservoir correlation functions

TrR
[
Uα1(t1)Uα2(t2) · · · Uαm

(tm)ρR

] ≡ {12 · · · m}. (6)

They determine if, and in what manner, the system relaxes towards a state of equilibrium.
We assume that (6) vanishes for m odd. Moreover, we assume that for m even (6) can be

factorized into products of pair-correlation functions. The latter are defined as

cα1α2(t1, t2) = TrR
[
Uα1(t1)Uα2(t2)ρR

] ≡ {12}. (7)

In this work, we shall rely on the following factorization scheme:

{1234} = {12}{34} + {14}{23}
{123456} = {12}{34}{56} + {12}{36}{45} + {14}{23}{56} + {16}{23}{45} + {16}{25}{34}
. . . . (8)

It is straightforward to construct a graphical representation of (8). Consider the points with
x = 1, 2, 3, . . . , m and y = 0 in the xy plane; form pairs by drawing lines in the lower
halfplane; only retain those graphs for which lines never intersect. Now if we link up 1 and 3
as well as 2 and 4, then one intersection of lines is needed. Indeed, the factorization {13}{24}
does not show up in (8). We emphasize that (8) includes all factorizations that make a nonzero
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contribution in the limit of weak damping. Hence, we shall be able to reproduce the complete
van Hove–Davies theory of Markovian quantum dissipation.

For a thermal reservoir consisting of harmonic oscillators, factorization of correlation
functions can be carried out with the help of Wick’s theorem [17]. Obviously, a Wick
contraction between reservoir potentials corresponds to a pair {kl} of the graphs just introduced.
In (8) we only retain those Wick contractions that are of a generalized nearest-neighbour type.
To collect these, one must subject the set of plain nearest-neighbour contractions to any cyclic
permutation of reservoir potentials, in each order of λ. We can graphically perform this
exercise. Under the permutation 1234 → 2341 the graph {12}{34} is mapped to {14}{23}.
The other cyclic permutations do not produce the graph {13}{24}, which is indeed lacking
in (8). To find all generalized nearest-neighbour contractions of order λ6, we first extend
all graphs of order λ4 with the plain nearest-neighbour contraction {56}. The resulting
graphs {12}{34}{56} and {14}{23}{56} are then subjected to cyclic permutations of reservoir
potentials. The additional graphs {16}{23}{45}, {12}{36}{45} and {16}{25}{34} appear. We
thus reproduce all Wick contractions figuring in (8).

We implement the prescription (8) in the perturbative expansion for the bitemporal
operator ξ(t, t ′) that follows from (2) and (5). Let us first make the choice t ′ = 0, so
that all system potentials stand to the left of ρS . It is quite clear that after employment of (8),
ξ(t, 0) depends on the initial reservoir state ρR in a nonlinear fashion. Consequently, if we
wish to sum up all contributions to ξ(t, 0), we should really search for a nonlinear equation.
This happens by scrutinizing how (8) modifies the first few terms of the perturbative expansion
for ξ(t, 0). We are led to the statement that ξ(t, 0) becomes equal to Q(t, 0)ρS . The new
operator satisfies the nonlinear integral equation

Q(t, s) = 1S − λ2
∑
αβ

∫ t

s

du

∫ u

s

dv Vα(u)Q(u, v)Vβ(v)Q(v, s)cαβ(u, v). (9)

The choice t � s � 0 should be made.
Iteration of (9) gives

Q(t, s) = 1S − λ2
∑
α1α2

∫ t

s

dt1

∫ t1

s

dt2 Vα1(t1)Vα2(t2)cα1α2(t1, t2)

+ λ4
∑

α1α2α3α4

∫ t

s

dt1

∫ t1

s

dt2

∫ t2

s

dt3

∫ t3

s

dt4 Vα1(t1)Vα2(t2)Vα3(t3)Vα4(t4)

× [cα1α2(t1, t2)cα3α4(t3, t4) + cα1α4(t1, t4)cα2α3(t2, t3)]

− λ6
∑

α1α2α3α4α5α6

∫ t

s

dt1

∫ t1

s

dt2

∫ t2

s

dt3

∫ t3

s

dt4

∫ t4

s

dt5

∫ t5

s

dt6 Vα1(t1)Vα2(t2)

×Vα3(t3)Vα4(t4)Vα5(t5)Vα6(t6)[cα1α2(t1, t2)cα3α4(t3, t4)cα5α6(t5, t6)

+ cα1α2(t1, t2)cα3α6(t3, t6)cα4α5(t4, t5) + cα1α4(t1, t4)cα2α3(t2, t3)cα5α6(t5, t6)

+ cα1α6(t1, t6)cα2α3(t2, t3)cα4α5(t4, t5) + cα1α6(t1, t6)cα2α5(t2, t5)cα3α4(t3, t4)]

+ · · · , (10)

where contributions of order λ8 and higher have been omitted. One checks that the iterative
series for Q(t, 0)ρS is indeed identical to the perturbative expansion for ξ(t, 0) as obtained
from (2), (5) and (8). The orders of λ8 and higher can be covered by setting up an induction
proof.

We are now in a position to perform a summation of all terms contributing to the
perturbative expansion for the full bitemporal operator ξ(t, t ′). Upon inserting (5) into (2), we
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see that potentials Vα ⊗ Uα appear on both sides of ρS ⊗ ρR . Due to the cyclic property of the
trace over R, the order of the reservoir potentials is not fixed. However, as we implement the
prescription (8), we refrain from modifying the order of the potentials. Moreover, we count
the number p of pairs Uα1(t1), Uα2(t2) that make up a pair-correlation function and enclose ρR

at the same time. That is to say, before factorization of correlation functions is carried out, the
potential Uα1(t1) should stand to the left of ρR , and the potential Uα2(t2) to the right of ρR (or
the other way round).

The sum of all contributions to ξ(t, t ′) for which p equals 0, amounts to Q(t, 0)ρSQ
†(t ′, 0).

This follows directly from our discussion of the case t ′ = 0. The sum of all contributions to
ξ(t, t ′) for which p equals 1, amounts to

λ2
∑
αα′

∫ t

0
ds

∫ t ′

0
ds ′Q(t, s)Vα(s)Q(s, 0)ρSQ

†(s ′, 0)Vα′(s ′)Q†(t ′, s ′)cα′α(s ′, s). (11)

We substitute the iterative solution of (9) into (11) and interchange integrals in a suitable
manner. Then all contributions to ξ(t, t ′) with p = 1 indeed emerge.

The integrand of (11) contains the operator Q(s, 0)ρSQ
†(s ′, 0), which is the solution for

ξ(s, s ′) if p equals 0. The foregoing recognition suggests that for a proper handling of the
cases p = 0, 1, 2, 3, . . . , one should perform an iteration of

ξ(t, t ′) = Q(t, 0)ρSQ
†(t ′, 0)

+ λ2
∑
αα′

∫ t

0
ds

∫ t ′

0
ds ′Q(t, s)Vα(s)ξ(s, s ′)Vα′(s ′)Q†(t ′, s ′)cα′α(s ′, s). (12)

This is the desired integral equation for the bitemporal operator. It is important to point
out that (9) and (12) constitute a closed set of equations that is embedded in the Hilbert
space of the system. The reservoir manifests itself exclusively through the pair-correlation
function (7). We shall not investigate convergence of the iterative solution generated by (9)
and (12). On the other hand, via a simple but rather lengthy induction proof one formally
demonstrates that this iterative solution coincides with the perturbative expansion for ξ(t, t ′)
that is obtained from (2), (5) and (8).

One might wonder whether it is possible to avoid the use of a bitemporal operator.
Then (12) should be replaced by an equation for the density operator itself. Upon choosing
t = t ′, the left-hand side of (12) indeed reduces to ρS(t). However, on the right-hand side the
integrand still depends on the variables s and s ′. We therefore conclude that summation of our
expansion for the density operator requires employment of a bitemporal quantity.

Adopting a perturbative approach and systematically retaining generalized nearest-
neighbour Wick contractions, we have devised dissipative dynamics of non-Markovian nature.
Next, we have to find out whether this dynamics complies with the conditions that safeguard
physical relevance.

3. Physical content

Postponing a continuum limit for the reservoir, we may expand the initial reservoir state as

ρR =
∑

j

µj |rj 〉〈rj |. (13)

The c-numbers {µj } are positive and add up to unity. The kets {|rj 〉} make up an orthonormal
basis for the reservoir Hilbert space. Use of (13) in (2) shows that the evolution of the density
operator is dictated by the Kraus map [12]

ρS(t) =
∑
m

Wm(t)ρSW
†
m(t). (14)
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The operators {Wm(t)} act within the Hilbert space of the system. They must obey the
requirement

∑
m W

†
m(t)Wm(t) = 1S , otherwise the trace of the density operator is not

conserved. The precise definition of Wm(t) can be found in the literature [18]. From (14) one
learns that ρS(t) is self-adjoint and positive if the same is true for ρS .

The evolution equations (9) and (12) furnish a density operator that evolves in accordance
with the Kraus map. This can be demonstrated by factorizing the pair-correlation function (7)
with the help of the completeness relation for the basis {|rj 〉}. The resulting expansion for
cα′α(s ′, s), as well as the self-adjointness (3) of the interaction Hamiltonian, should be utilized
in (12). Upon iterating (12) and choosing t equal to t ′, one gets a density operator that indeed
attains the form (14).

The next important issue is conservation of trace. We already explained that the collection
of graphs drawn under (8) is closed under any cyclic permutation of reservoir potentials.
Accordingly, one may hope that the trace of ρS(t) is conserved. Our expectations are confirmed
by evaluating the derivative of ξ(t, t) with respect to time. Differentiation of (12) leads to

dξ(t, t)

dt
= dQ(t, 0)

dt
ρSQ

†(t, 0) + λ2
∑
αα′

∫ t

0
ds ′ Vα(t)ξ(t, s ′)Vα′(s ′)Q†(t, s ′)cα′α(s ′, t)

+ λ2
∑
αα′

∫ t

0
ds

∫ t

0
ds ′ ∂Q(t, s)

∂t
Vα(s)ξ(s, s ′)Vα′(s ′)Q†(t, s ′)cα′α(s ′, s) + h.c.

(15)

On the right-hand side three Hermitian conjugate terms must be added. The derivatives of
Q(t, s) are eliminated with the help of (9). Furthermore, the operator ξ(t, s ′) is eliminated
by merely making use of (12) again. In total, four contributions of order λ2 are obtained, in
which the initial state ρS figures. Furthermore, four contributions of order λ4 are obtained,
in which the bitemporal operator ξ figures. Next, we take the trace over S and exploit its
cyclic property. Upon interchanging some integrals and making use of the self-adjointness
relation (3), we are left with a vanishing result. The conclusion must be that the equality

TrS[ρS(t)] = 1 (16)

holds true for all t, at least, as long as the trace of the initial state ρS equals unity.
In the weak-coupling or van Hove [13] limit, given by t → ∞, λ → 0 and λ2t constant,

only plain nearest-neighbour Wick contractions survive if it comes to application of Wick’s
theorem. Hence, in the van Hove limit solution of (9) and (12) surely reproduces the celebrated
weak-coupling density operator that is highlighted in any textbook on quantum dissipation
[17, 18]. Conditions under which the van Hove limit exists and converges were formulated
by Davies [14]. In the following, we do not address these matters. We are merely going to
calculate the density operator that is generated by (9) and (12) if the van Hove limit is taken.

As a first step, we derive from (9) the auxiliary result

lim
λ→0

Q(t/λ2, s/λ2) = eK(t−s), (17)

where K denotes a time-averaged operator

K = − lim
T →∞

∑
αβ

T −1
∫ T

0
dt

∫ ∞

0
ds Vα(t + s)Vβ(t)cαβ(t + s, t). (18)

It is assumed that the limit on the left-hand side of (17) exists. As a consequence, for small
λ the operator Q(v/λ2 + u, v/λ2) converges to Q(v/λ2, v/λ2), which is just equal to unity.
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Thus (9) becomes a linear equation in the van Hove limit. The fact that a time-averaged
operator comes into existence is due to the identity

lim
λ→0

∫ t

0
ds f (s/λ2)g(s) = lim

T →∞
T −1

∫ T

0
du f (u)

∫ t

0
ds g(s) (19)

which is valid for well-behaved functions f and g. Verification of (19) goes by means of
partial integration.

As a second step, we derive from (12) and (17) the integral equation

lim
λ→0

ρS(t/λ
2) = eL1t ρS +

∫ t

0
ds eL1(t−s)L2 lim

λ→0
ρS(s/λ

2) (20)

where the superoperators

L1ρS = KρS + ρSK
†

L2ρS = lim
T →∞

∑
αβ

T −1
∫ T

0
dt

∫ ∞

0
ds[Vα(t)ρSVβ(t + s)cβα(t + s, t)

+ Vα(t + s)ρSVβ(t)cβα(t, t + s)] (21)

come into play. Before invoking (19), one has to separate the double integral of (12) into two
parts

∫ t

0 ds
∫ t

s
ds ′ and

∫ t

0 ds ′ ∫ t

s ′ ds.
Recognizing that (20) is nothing more than a Kato identity [19], we arrive at

lim
λ→0

ρS(t/λ
2) = eLtρS L = L1 + L2. (22)

This is the well-known Markovian result for the density operator of a weakly damped quantum
system. Note that in [15] we did not succeed in reproducing the van Hove–Davies theory of
Markovian damping.

In conclusion, the integral equations (9) and (12) provide us with a non-Markovian density
operator that displays a physically acceptable behaviour. Apart from being self-adjoint and
positive, the density operator also obeys the constraint of trace conservation. Furthermore, it
possesses a sound Markovian limit. On top of that, it can be analytically computed by means
of Laplace transformation. This job will be taken care of in the next two sections.

4. N-level atom at zero temperature

For many applications the spectrum of the system Hamiltonian may be taken as discrete and
nondegenerate. We put the eigenvalues of HS into the order ω1 < ω2 < ω3 < · · · < ωN ,
where N may become infinitely large. Denoting the eigenstates of HS as {|k〉}, we can make
the following choice for the potentials:

α → (kl) Vα → |k〉〈l| Uα → U(kl) = U
†
(lk). (23)

The orthonormality of the set {|k〉} will be of frequent help.
At zero temperature, the initial state ρR may be replaced by the ground state |0〉RR〈0| of

the reservoir. Without loss of generality, the property HR|0〉R = 0 may be assumed. The fact
that ρR and HR commute enables us to write

c(kl)(mn)(t, s) = c(kl)(mn)(t − s, 0) (24)

for arbitrary t and s. This identity is useful, but does not bring much mathematical relief.
Hence, we are in need of further assumptions.

First, we shall make use of the property U(kl)|0〉R = 0, whenever the inequality k � l

is true. This means that we restrict our description to pure decay. In reality, excitations do
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take place in S. The reason is that even at zero temperature the system experiences quantum
fluctuations [17].

A second important simplification is brought about by the rotating-wave approximation,
which can be stated as

c(kl)(mn)(t, s) = 0 if ωk − ωl + ωm − ωn �= 0. (25)

To interpret the above restriction, we observe that the system potentials generate oscillations
in (12), which have a period of order 1/ω1. The latter time-scale is much smaller than a typical
reservoir decorrelation time. The occurrence of fast oscillations indicates that H1 can induce
excitations for which energy is not conserved. As long as the coupling between system and
reservoir is moderate, such transitions can be safely ignored. This happens by assuming (25).

On the basis of (23)–(25) one proves by induction in k that the solution of (9) has the form

〈k|Q(t, s)|l〉 = δklQk(t − s) = δklQ
∗
k(s − t). (26)

The function on the right-hand side is obtained by iterating the Laplace relation

Q̂k(ω + iε) =
[
ω + λ2

k−1∑
l=1

∫ ∞

−∞

dω′

2π i
Q̂l(ω

′ + iε)ĉ(kl)(lk)(ω − ω′ + ωk − ωl + iε)

]−1

(27)

and utilizing the Laplace identities

f̂ (z) = −i
∫ ∞

0
dt eiztf (t) f (t) = i

2π

∫ ∞

−∞
dω e−iωt f̂ (ω + iε). (28)

As usual, ε is infinitesimally positive. The Laplace transform f̂ (z) must be analytic in the
upper halfplane Im z > 0.

It is essential to check that the last-mentioned condition is respected by all Laplace
transforms figuring in (27). As a continuum limit has not yet been taken, the eigenvalues of
the reservoir Hamiltonian make up a discrete set {εj }. From (7) one then infers that ĉ(kl)(lk)(z),
which is the Laplace transform of c(kl)(lk)(t, 0), is a meromorphic function. Its poles {z = εj }
are located on the real axis.

Elaborating ĉ(kl)(lk)(z) with the help of the eigenstates of HR , one verifies the inequalities

Im z Im ĉ(kl)(lk)(z) < 0
dĉ(kl)(lk)(x)

dx
< 0, (29)

where Im z differs from zero and the real variable x differs from all eigenvalues {εj }. Via
induction in k, we are going to show that (i) Q̂k(z) is a meromorphic function, the poles{
z = η

(k)
j

}
of which lie on the real axis, and (ii), the derivative dQ̂−1

k (x)
/

dx is positive, with
x real.

For k = 1, the foregoing results are trivial, because Q1(t) is equal to 1, as follows
from (27). For k � 2, the induction assumption and the residue theorem enable us to derive
from (27)

Q̂−1
k (z) = z − λ2

k−1∑
l=1

∑
j

ĉ(kl)(lk)

(
z − η

(l)
j + ωk − ωl

) [
dQ̂−1

l (x)

dx

]−1

x=η
(l)
j

. (30)

The above representation and the fact that ĉ(kl)(lk)(z) is meromorphic imply that Q̂k(z) is
meromorphic as well. In view of (29) and (30), both Im Q̂−1

k (z)
/

Im z and dQ̂−1
k (x)

/
dx must

be positive. This statement completes our proof, as we may now conclude that the poles of
Q̂k(z) lie on the real axis.
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For the cases of a two-level and three-level atom iteration of (27) yields

Q2(t) = i

2π

∫ ∞

−∞
dω e−iωt [ω − λ2ĉ(21)(12)(ω + ω2 − ω1 + iε)]−1

Q3(t) = i

2π

∫ ∞

−∞
dω e−iωt

[
ω − λ2ĉ(31)(13)(ω + ω3 − ω1 + iε)

+ λ2
∫ ∞

−∞

dω′

2π i

ĉ(32)(23)(ω − ω′ + ω3 − ω2 + iε)

ω′ − λ2ĉ(21)(12)(ω′ + ω2 − ω1 + iε)

]−1

(31)

with ε = 0+ and t � 0. If the reservoir is subjected to a continuum limit, the poles of ĉ(kl)(lk)(z)

unite so as to generate a branch cut on the real axis. This signals the onset of irreversible
behaviour. Through a Riemann–Lebesgue argument one makes sure that Qk(t) converges to
zero for t tending to ∞ and k � 2. Consequently, ρS(t) ends up in the ground state |1〉〈1|.
This is in keeping with our expectations, because we did not take into account any zero-point
fluctuations.

By carrying out a double Laplace transformation one can solve (12) in the same manner
as (9) was solved. At zero temperature, direct iteration of (12) offers a shorter path, because
only a finite number of iterations is required. The density operator of a damped two-level
atom comes out as

〈2|ρS(t)|2〉 = |Q2(t)|2〈2|ρS |2〉 〈2|ρS(t)|1〉 = Q2(t)〈2|ρS |1〉. (32)

The remaining two matrix elements follow from self-adjointness and conservation of trace.
In our preliminary letter [15], the density operator (32) was elaborated for the case

of spontaneous emission of a photon at zero temperature. The standard rotating-wave
Hamiltonian was employed. It was found that (32) coincides with the density operator
resulting from an exact diagonalization of the Hamiltonian [17]. Next, we tested whether (32)
could also predict Rabi oscillations of a two-level atom at zero temperature. To that end, use
was made of the Jaynes–Cummings Hamiltonian. Surprisingly, (32) once more reproduced the
exact result for ρS(t). The latter can be found in [20]. All in all, (32) is capable of accurately
describing dynamics of both irreversible and reversible nature. These findings convey the
message that the evolution equation (12) has a truly non-Markovian character.

For the case of a damped three-level atom at zero temperature, solution of (9) and (12)
brings us to the following density operator:

〈2|ρS(t)|2〉 = |Q2(t)|2〈2|ρS |2〉 + λ2
∫ t

0
ds

∫ t

0
ds ′Q2(t − s)Q∗

2(t − s ′)

×Q3(s)Q
∗
3(s

′)c(32)(23)(s
′, s) ei(ω3−ω2)(s

′−s)〈3|ρS |3〉
〈3|ρS(t)|3〉 = |Q3(t)|2〈3|ρS |3〉
〈k|ρS(t)|l〉 = Qk(t)Q

∗
l (t)〈k|ρS |l〉.

(33)

One must choose k �= l. As in (32), only independent matrix elements are given. Note
that for some configurations of the energy levels ω1 < ω2 < ω3 other correlation functions
than c(kl)(lk) might contribute to the off-diagonals of the density operator. For instance, if ω2

coincides with (ω1 + ω3)/2, then (25) allows the correlation function c(32)(12) to differ from
zero.

It is instructive to systematically evaluate all diagonals of the density operator by
employing Laplace transformation in (12). This opens up the possibility of verifying that
the sum of all diagonals indeed amounts to unity. The proof relies on the method of partial
fractions and Cauchy’s theorem. One should start with the case N = 2 and utilize the
corresponding expertise in treating the case N = 3.
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Once the interaction Hamiltonian H1 is specified, the full evaluation of the
solutions (31)–(33) can be commenced. For the case of spontaneous emission interesting
results were reported, indicating that in a strongly non-Markovian regime an excited atomic
level might exhibit power-law decay instead of exponential decay [21, 22]. Incidentally,
we cannot recommend to replace correlation functions c(kl)(lk)(t, 0) by phenomenological
expressions that do not stem from a particular choice for H1. Such an uncontrolled move
surely endangers the positivity of the density operator.

Finally, we argue that our non-Markovian formalism is capable of delivering exact results
for atoms with an arbitrary number N of quantum levels. To see this in detail, we couple each
atomic transition to a separate zero-temperature reservoir. Then (25) may be replaced by the
stronger restriction

c(kl)(mn)(t, s) = c(kl)(lk)(t, s)δknδlm. (34)

For l � k the right-hand side is vanishing because of the earlier made assumption
U(mn)|0〉R = 0, with m � n. Upon employing (34) the iterative solution of (12) becomes
identical to the exact perturbative series for the bitemporal operator. The latter is obtained by
inserting (5) into (2) and making use of Wick’s theorem. A proof of the foregoing surprising
statement is outlined in the appendix. Altogether, (32) and (33), as well as the corresponding
solutions for N = 4, 5, 6, . . . , are exact if (34) holds true and the reservoir is at absolute zero.

5. Finite temperature

From here onwards, we keep the reservoir at temperature β−1 and assume that ρR is in the
thermal state exp(−βHR)/ TrR[exp(−βHR)]. The spectrum of HR can be rendered continuous
in due course. The reservoir potentials no longer act on the ground state |0〉R , so all reservoir
correlation functions of type c(kl)(lk) differ from zero. The cyclic property of the trace permits
us to establish the KMS identity

c(kl)(mn)(t, 0) = c(mn)(kl)(−t − iβ, 0). (35)

For the case of weak damping, (35) guarantees that the density operator ρS(t) converges to a
final state as t becomes large [23].

The foregoing statement motivates us to examine the asymptotic dynamics that is induced
by (9) and (12) at finite temperature. First of all, we want to know whether the density operator
still converges to a final state. To answer this question, we shall look for a particular solution
ξp(t, t ′) of (12) that becomes independent of time for the choice t = t ′. In short, we shall
investigate whether (12) allows for a fixed point. To avoid any misunderstandings, it should
be stressed that the mere existence of a fixed point does not guarantee that the density operator
really converges to a final state. The situation is the same as for a linear differential equation of
type df (t)/dt = L[f ](t), where solution of L[f ](t) = 0 does not provide a mathematically
rigorous statement on the behaviour of f (t) for large times.

In preparation of our search for a fixed point, we make a few crucial remarks on the
solution of (9) at finite temperature. It still takes on the form (26). This becomes clear upon
iterating (9) under use of (25). In (27) the sum over l now runs from 1 to N. Therefore,
the asymptotic result limt→∞ Qk(t) = 0 is valid for all k, because Q̂1(z) no longer has a
pole for z = 0. Since Qk(t) is a smooth function, the analytic continuation Qk(y), with
y complex, exists in a certain strip around the axis Im y = 0. From (9) and the inequality
c(kl)(lk)(ix, 0) � 0, with x real, one deduces that Qk(−iβ) is positive.

In the asymptotic regime, (12) possesses a fixed point. It is given by

〈k|ξp(t, t ′)|l〉 = δklQk(t − t ′ − iβ) e−βωk/Z(β). (36)
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The choice Z(β) = ∑N
k=1 Qk(−iβ) exp(−βωk) properly normalizes the trace of ξp(t, t). To

show that (36) is indeed a solution of (12), one needs the relation

Qk(t − t ′) = Qk(t)Q
∗
k(t

′) + λ2
N∑

l=1

∫ t

0
ds

∫ t ′

0
ds ′Qk(s)Q

∗
k(s

′)Ql(t − t ′ − s + s ′)

× c(kl)(lk)(t − t ′ − s + s ′, 0) ei(ωk−ωl)(t−t ′−s+s ′). (37)

To prove this, the substitutions t → t + u and t ′ → t ′ + u should be carried out, followed by
differentiation with respect to u. The derivatives of Qk are eliminated with the help of (9).

Let us now insert (36) into (12) and take profit of (25) as well as the KMS identity. In
the ensuing relation we perform the integral transformations s → t − s and s ′ → t ′ − s ′.
Subsequently, we perform the overall shift t → t + iβ. We divide the contour from s = 0 to
s = t + iβ into a part with 0 � Re s � t , Im s = 0, and a part with Re s = t, 0 � Im s � β.
After employment of (37), a few terms still remain. These vanish by setting t equal to t ′ and
taking t to infinity. If β equals zero the last manipulations need not be carried out. In that
case (36) is a solution of (12) for arbitrary t and t ′.

The last observation tells us that in the classical limit, i.e., the limit of β → 0, the state
of maximum entropy, given by

∑N
k=1 |k〉〈k|/N , acts as fixed point for the density operator.

The inverse limit of β → ∞ leads to a fixed point that is familiar as well. In evaluating
the last-mentioned limit, one should be aware of the fact that the magnitude of Qk(−iβ) is
set by the dimensionless product λβγ , where γ 2 = ∑N

k,l=1 c(kl)(lk)(0, 0) is an upper bound
on all pair-correlation functions. The foregoing estimate can be derived by scaling (9) in a
suitable manner. Altogether, for λγ < ω1 and β → ∞, the exponentials exp(−βωk) become
dominant in (36), so that 〈k|ξp(t, t)|k〉 converges to δk1 for large t, as desired.

Finally, for λ tending to zero at fixed temperature, all weights Qk(−iβ) converge to unity,
by the same remark as made under (18). Then (36) reduces to the thermal state for t = t ′.
As a consequence, on the basis of a continuity argument in the norm ‖λH1‖ one may claim
that the fixed point (36) remains stable up to a certain, probably modest, value of ‖λH1‖. In
case the foregoing norm does not have a finite value, one should truncate the Hilbert space of
system and reservoir by introducing provisional cut-offs.

Exactly solvable models, such as the Ullersma model [16] for the damped harmonic
oscillator, teach us that in the strong-coupling regime quantum fluctuations seriously affect
the dynamics, also for large times. Due to the rotating-wave approximation (25), we largely
ignore quantum fluctuations. Hence, if the norms ‖H0‖ and ‖λH1‖ become of comparable
magnitude, in other words, if we approach the strong-coupling regime, (25) breaks down.
Consequently, the fixed point (36) loses its physical relevance. Then the question of its
stability becomes redundant. As we do not specify H1 in this work, it is hard to estimate under
which circumstances employment of (25) is still meaningful. If the bookkeeping parameter λ

is set equal to unity, the inequality ‖H1‖ � ‖H0‖ seems to offer a crude but safe criterion.
Both (9) and (12) simplify a lot under the use of (25). Unfortunately, at finite temperature

the nonlinear character of (9) persists. As a consequence, analytic solution of (9) becomes a
heavy task. There is only one escape out of this impasse. A way of linearizing (9) has to be
developed that does not affect the basic physical properties of the density operator. Naturally,
in making (9) analytically accessible one must be prepared to accept a major concession at
some point.

Placing ourselves in the regime of moderate coupling, we shall sacrifice the Kraus
criterion (14). Then positivity of the density operator is no longer guaranteed, but must
be proved separately. We are fully aware of the fact that, strictly speaking, derivations
violating the Kraus criterion fall outside the scope of this paper. On the other hand, it seems
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to us that any physically meaningful result on non-Markovian damping at finite temperature is
worth publishing, in view of applications to qubit dynamics, nuclear magnetic resonance, and
other quantum processes. Indeed, the thermalized two-level atom has attracted considerable
attention lately [11, 24].

Owing to (25), the diagonals of the density operator do not couple with any off-diagonals.
Thus, it is meaningful to define an evolution matrix (t, t ′) as

〈k|ξ(t, t ′)|k〉 =
N∑

l=1

(t, t ′)kl〈l|ρS |l〉. (38)

We are going to subject  to a temperature-dependent transformation. Next, we shall compute
the transformed matrix ̃ and, subsequently, return to the original frame.

Since the trace of ξ(t, t) is conserved, the transformed matrix

̃(t, t ′) = B(t, t ′)T B−1 Bkl = δkl − δk,l+1 (39)

possesses the property

̃(t, t) · g = g gk = δk1. (40)

We see that the density operator generated by ̃(t, t) has the ground state |1〉〈1| as fixed
point. Our hope is now that in calculating ̃(t, t ′) one can pick up some advantages of the
zero-temperature case. We propose to calculate ̃(t, t ′) from the following set:

Q̃k(t) = 1 + λ2
N∑

l=1

∫ t

0
ds

∫ s

0
du G̃

(1)
kl (s − u)Q̃l(u) (41)

̃(t, t ′)kl = Q̃k(t)Q̃
∗
k(t

′)δkl

+ λ2
N∑

m=1

∫ t

0
ds

∫ t ′

0
ds ′ Q̃k(t − s)Q̃∗

k(t
′ − s ′)G̃(2)

km(s ′ − s)̃(s, s ′)ml. (42)

The generators G(j) and their transformation law will be given below.
Upon removing all tildes, the above set becomes identical to (9) and (12), at least, if the

right-hand side of (9) is linearized. The operator Q(u, v) must be replaced by unity. In the
weak-coupling limit this linearization automatically takes place. Hence, the untransformed
version of (42), that is to say, (42) without tildes, is capable of reproducing the Markovian
density operator (22). Via the method explained in section 3 one proves that

lim
λ→0

(t/λ2, t/λ2) = exp

{
t

∫ ∞

−∞
ds[G(1)(s) + G(2)(s)]

}
. (43)

By making a comparison with (22), we can identify the untransformed generators. The
expressions

G(1)(t)kl = −δkl

N∑
m=1

ei(ωk−ωm)t c(km)(mk)(t, 0)

G(2)(t)kl = ei(ωl−ωk)t c(lk)(kl)(t, 0)

(44)

are found.
We now come to the central question of how to fix the transformed generators. There is

only one rigorous possibility. We transform (9) and (12) in the way as prescribed by rule (39),
and compare the ensuing equations with (41) and (42). It appears that in doing so, we do not
benefit from any zero-temperature advantages. In particular, (42) cannot be solved by merely
performing a finite number of iterations.
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The situation drastically improves if the transformed generators are determined from

G̃(1)(t) + G̃(2)(t) = B[G(1)(t)T + G(2)(t)T ]B−1. (45)

As in (44), we allot all terms containing a Kronecker delta to the first generator, and all
remaining terms to the second one. We are led to

G̃(1)(t)kl = −δkl

N∑
m,n=1

ei(ωn−ωm)t c(nm)(mn)(t, 0)(θk,m+1δkn + θmkδk,n+1)

G̃(2)(t)kl =
N∑

m,n=1

ei(ωn−ωm)t c(nm)(mn)(t, 0)(θk,l+1θl,m+1 − θl,k+1θml)(δk,n+1 − δk,n).

(46)

The symbol θkl is equal to 1 for k � l, and equal to 0 otherwise.
As testified by (43), in the van Hove limit the transformation (45) agrees with (39).

Thus, (45) constitutes a reasonable approximation in the moderate-coupling regime, although
the Kraus criterion (14) is abandoned. The last observation derives from the fact that a
subtraction is carried out in (39).

The set (41)–(42), with (46) inserted, can be solved along the same lines as discussed
in section 4. Once ̃(t, t ′) is known, the inverse transformation (39) can be employed
to compute (t, t ′), as well as the diagonals of the density operator. The identities
G̃(1)(t)1k = G̃(2)(t)k1 = 0 guarantee that (40) is true, so the trace of ρS(t) is always conserved.
Outside the van Hove limit we no longer obey (14). Therefore, one has to wait and see whether
all diagonals of the density operator stay nonnegative if λ is increased.

For N = 2 execution of the above program is straightforward. As in the zero-temperature
case, the function Q̃1(t) equals unity. A comparison with the zero-temperature result (31)
directly yields

Q̃2(t) = i

2π

∫ ∞

−∞
dω e−iωt

× [ω − λ2ĉ(21)(12)(ω + ω2 − ω1 + iε) − λ2ĉ(12)(21)(ω + ω1 − ω2 + iε)]−1. (47)

To get ̃(t, t ′), only a single iteration of (42) is required. Use of the inverse transformation (39)
provides us then with the following extension of (32):

〈2|ρS(t)|2〉 = P12(t)〈1|ρS |1〉 + [1 − P21(t)]〈2|ρS |2〉. (48)

For notational convenience, the abbreviation

Pkl(t) = λ2
∫ t

0
ds

∫ t

0
ds ′Q̃2(s)Q̃

∗
2(s

′) ei(ωk−ωl)(s
′−s)c(kl)(lk)(s

′, s) (49)

has been introduced. Note that the evolution of the ground state is described by 〈1|ρS(t)|1〉 =
1 − 〈2|ρS(t)|2〉. In view of the identity

P12(t) + P21(t) + |Q̃2(t)|2 = 1 (50)

and the inequality Pkl(t) � 0, both diagonals of ρS(t) cannot become negative. Although the
Kraus criterion is not obeyed, the density operator (48) meets the requirements of positivity
and trace conservation. The task of checking (50) is fulfilled via differentiation with respect
to t.

A useful application of (48) is a non-Markovian description of finite-temperature atomic
decay. At equilibrium, the relative occupation number of the excited level is given by

lim
t→∞

〈2|ρS(t)|2〉
〈1|ρS(t)|1〉 = P12(∞)

P21(∞)
. (51)
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This is a non-Markovian counterpart of the Boltzmann factor exp[−β(ω2 − ω1)]. For weak
coupling (48) is equivalent to the well-known optical Bloch equations [17]. In checking this
assertion, one has to evaluate the van Hove limit of (49). The double integral must be treated
in the same way as explained under (21).

Finally, we mention that in order to solve (42) for N = 3, an infinite number of iterations
is needed. In contrast, at zero temperature only two iterations are sufficient. Therefore, one
can very well argue that the full iterative solution of (42) may be truncated as long as the
temperature is kept sufficiently low.

6. Conclusion

Adopting a bitemporal approach, we succeeded in summing up a subseries of the standard
perturbative expansion for the density operator of a quantum system that exchanges energy
with a reservoir. The dissipative dynamics we found complies with the Kraus map (14)
and conserves probability. For the case of weak coupling between system and reservoir, we
recovered the complete van Hove–Davies theory of quantum damping. The closed set (9)
and (12) constitutes our main result. The approximations and assumptions underlying this set
are listed below.

(i) System and reservoir were assumed to be completely uncorrelated at time zero. In
the literature [25], it was pointed out that failure to account for initial entanglement might
lead to a poor description, especially if the coupling between system and reservoir becomes
strong. Unfortunately, our attempts to incorporate entanglement in the present treatment were
not successful. A major obstacle is that entanglement causes the dependence of the density
operator on its initial state to become nonlinear [26, 27].

(ii) Reservoir correlation functions were factorized into products of pair-correlation
functions. For a thermal reservoir this is indeed allowed, in virtue of Wick’s theorem [17].
For other cases, such as a squeezed reservoir, one may question the decision of dealing with
the reservoir through pair-correlation functions only. On the other hand, we stress that if one
leaves all correlation functions intact, the possibility of summing up a perturbative series gets
lost. Higher order terms can no longer be expressed as products of lower order terms. At this
point, we should mention that correlation functions can always be factorized by invoking the
completeness relation for the reservoir Hilbert space. However, this possibility is impractical,
because it does not match with our basic intention of deriving a description that is completely
embedded in the Hilbert space of the system.

(iii) In appealing to Wick’s theorem we systematically discarded contractions that are not
of generalized nearest-neighbour type. In the van Hove limit this automatically happens, so
for moderate values of λ the error we made might be modest still. We recall that no error is
made at all, if (34) is assumed and the temperature equals zero. Of course, the performance
of (12) is also influenced by the choice of initial conditions. For a damped harmonic oscillator
that starts from a coherent state of high energy, all Wick contractions are needed, even if the
reservoir is kept at absolute zero. We can try to improve on the generalized nearest-neighbour
approximation by performing all three Wick contractions for the correlation function {1234}.
It appears that upon including the irreducible graph {13}{24} into equations (9) and (12),
the Kraus criterion (14) is no longer fulfilled. A complete discussion is presented in the
appendix.

(iv) The Hilbert space of the system had to be chosen as separable. If not, the
decomposition (3) of the interaction Hamiltonian ceases to exist. Separability is not a severe
limitation, because in practice one encounters many damped systems the energy spectrum of
which is discrete. Examples are the N-level atom and the harmonic oscillator.
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(v) We worked with a system Hamiltonian that does not depend on time. This is
not a serious deficit either. The presence of a classical field does not alter our equations,
except for (4). There the unitary operator exp(iHSt) makes way for the time-ordered form
T

{
exp

[
i
∫ t

0 dt ′HS(t
′)
]}

, where T denotes a time-ordering operator.
In section 4 we outlined how the set (9) and (12) can be solved for the case of an N-level

atom or harmonic oscillator at zero temperature. The rotating-wave approximation (25) turned
out to be indispensable. Making use of the solutions (31), we wrote down clear-cut expressions
for the density operator of a damped two-level and three-level atom. In further evaluating the
integrals showing up in (31), one has to search for analytic continuation of the integrands below
the real axis. The circumstance that one has to struggle with a branch cut is not incidental, but
very much typical for a non-Markovian treatment of quantum dissipation. If one desires to
steer clear of branch cuts, one either has to resort to Markovian theory, or undertake a direct
numerical computation of the density operator. In general, the second option is useful for
testing concrete conjectures on a given system. It is not particularly helpful in deepening our
understanding of the physics behind quantum dissipative processes.

In section 5 the temperature of the reservoir was taken to be finite. The resulting nonlinear
character of (9) kept us back from deriving analytical solutions of (12). In spite of that, we
managed to demonstrate that for moderate coupling the density operator is likely to end up
in the vicinity of the familiar thermal state. In order to clear the way to analytical work,
we linearized (9) and gave up our intention of meeting constraint (14). Therefore, our
non-Markovian description (48) of a two-level atom immersed in a thermal bath should,
strictly speaking, not form part of this paper. Nevertheless, we feel that the derivation (38)–
(51) is worth publishing, because analytical results on finite-temperature damping are rather
scarce.
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Appendix. Going beyond the generalized nearest-neighbour approximation

In section 2 we factorized higher order reservoir correlation functions by invoking the
generalized nearest-neighbour approximation. This led to the factorization scheme (8) and,
eventually, to the evolution equations (9) and (12). By construction, this set generates a density
operator that is exact up to order λ2. The first error already appears in order λ4, because in
the Wick identity {1234} = {12}{34} + {13}{24} + {14}{23} the irreducible graph {13}{24}
is discarded. Hence, the contribution {13}{24} represents the lowest order correction to the
generalized nearest-neighbour approximation.

Inspection of (9) shows that the irreducible part {12} must be accompanied by the integrand
Vα1(t1)Q(t1, t2)Vα2(t2)Q(t2, s)cα1α2(t1, t2). Hence, the integrand going with {13}{24} should
read

Vα1(t1)Q(t1, t2)Vα2(t2)Q(t2, t3)Vα3(t3)Q(t3, t4)Vα4(t4)Q(t4, s)cα1α3(t1, t3)cα2α4(t2, t4). (A.1)
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Extension of (9) with the irreducible part {13}{24} thus leads to

Q(t, s) = 1S − λ2
∑
α1α2

∫ t

s

dt1

∫ t1

s

dt2 Vα1(t1)Q(t1, t2)Vα2(t2)Q(t2, s)cα1α2(t1, t2)

+ λ4
∑

α1α2α3α4

∫ t

s

dt1

∫ t1

s

dt2

∫ t2

s

dt3

∫ t3

s

dt4 Vα1(t1)Q(t1, t2)Vα2(t2)Q(t2, t3)

×Vα3(t3)Q(t3, t4)Vα4(t4)Q(t4, s)cα1α3(t1, t3)cα2α4(t2, t4). (A.2)

Note that the sign of the fourth-order contribution is determined by the identity i4 = 1.
Incorporation of the irreducible part {13}{24} into (12) is more involved, because the

bitemporal operator ξ must be placed inside the product V V V V in all possible ways. This
yields the forms V ξV V V, V V ξV V and V V V ξV . As in (12), operators Q must be inserted
into these three forms such that ξ and V remain neighbours. Then one collects all Wick
contractions that can be assembled from the irreducible parts {12} and {13}{24}.

The foregoing considerations bring us to the following extension of (12):

ξ(t, t ′) = Q(t, 0)ρSQ
†(t ′, 0)

+ λ2
∑
α1α1

′

∫ t

0
dt1

∫ t ′

0
dt1

′ Q(t, t1)Vα1(t1)ξ(t1, t1
′)Vα1

′(t1
′)Q†(t ′, t1′)cα1

′α1(t1
′, t1)

− λ4
∑

α1α1
′α2

′α3
′

∫ t

0
dt1

∫ t ′

0
dt1

′
∫ t1

′

0
dt2

′
∫ t2

′

0
dt3

′ Q(t, t1)Vα1(t1)ξ(t1, t3
′)Vα3

′(t3
′)

×Q†(t2
′, t3′)Vα2

′(t2
′)Q†(t1

′, t2′)Vα1
′(t1

′)Q†(t ′, t1′)cα2
′α1(t2

′, t1)cα3
′α1

′(t3
′, t1′)

+ λ4
∑

α1α2α1
′α2

′

∫ t

0
dt1

∫ t1

0
dt2

∫ t ′

0
dt1

′
∫ t1

′

0
dt2

′ Q(t, t1)Vα1(t1)Q(t1, t2)Vα2(t2)

× ξ(t2, t2
′)Vα2

′(t2
′)Q†(t1

′, t2′)Vα1
′(t1

′)Q†(t ′, t1′)cα2
′α1(t2

′, t1)cα1
′α2(t1

′, t2)

− λ4
∑

α1α2α3α1
′

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t ′

0
dt1

′ Q(t, t1)Vα1(t1)Q(t1, t2)Vα2(t2)

×Q(t2, t3)Vα3(t3)ξ(t3, t1
′)Vα1

′(t1
′)Q†(t ′, t1′)cα1α3(t1, t3)cα1

′α2(t1
′, t2). (A.3)

If the irreducible part {13}{24} makes no contribution, as is for instance the case in the van
Hove limit, then (A.2) and (A.3) reduce to the old evolution equations (9) and (12).

Following the same procedure as in section 3, we compute the derivative of TrS[ξ(t, t)]
with respect to t. A lengthy calculation shows that this derivative is equal to zero.
Consequently, (A.2) and (A.3) conserve the trace of the density operator. For the choice
t ′ = t the solution of the adjoint equation (A.3) is identical to the solution of (A.3) itself.
Hence, (A.3) gives rise to a self-adjoint density operator. Furthermore, one verifies by
induction that an iteration of (A.2) and (A.3) yields the perturbative series that is obtained
from (2), (5) and (8), provided that the right-hand side of (8) be systematically extended
with the irreducible graph {13}{24}. Unfortunately, (A.3) brings us some bad news as well.
The two terms of order λ4, the sign of which is negative, do not comply with the Kraus
criterion (14).

The exact perturbative series for ξ(t, t ′) contains the term (V + V V V )ρS(V + V V V ),
which does comply with the Kraus criterion. This tells us that terms of types V ξV V V and
V V V ξV may be taken into account, only if they are accompanied by the sixth-order term



Kraus map for non-Markovian quantum dissipation 14527

V V V ξV V V . Hence, (A.3) can be reconciled with the Kraus criterion if one is prepared to
consider terms containing irreducible graphs of order λ6. Four different species exist, namely

{13}{25}{46} {14}{26}{35} {15}{24}{36} {14}{25}{36}. (A.4)

As before, the constraint of trace conservation prescribes that the graphs (A.4) be combined
with all possible products of ξ and system potentials V . Hence, apart from the Kraus consistent
form V V V ξV V V , we also have to allow the forms V ξV V V V V and V V ξV V V V , as well
as their adjoints. Once again the Kraus criterion is compromised.

The material presented above permits us to put forward the following tentative conclusion:
collect all irreducible graphs up to a fixed order in λ; construct from these graphs evolution
equations for Q and ξ in the same way as for (9), (12), (A.2) and (A.3), i.e., by interleaving
system potentials with operators Q and ξ in a suitable manner. The ensuing evolution equations
conserve the trace and self-adjointness of the density operator. They do not comply with the
Kraus criterion, unless we work in lowest, that is to say, quadratic order of λ. Of course, the
more irreducible graphs we take into account, the closer we approach the exact perturbative
series for the density operator.

The foregoing statements imply that for a given Hamiltonian the accuracy of (9) and (12)
can be assessed by estimating the relative magnitude of higher order irreducible graphs such as
{13}{24} and the graphs (A.4). As we shall argue below, under assumption (34) all irreducible
graphs vanish at zero temperature, except for {12}. Consequently, (9) and (12) give rise to the
exact density operator, i.e., the density operator that is obtained by applying Wick’s theorem
to (2) and (5). Note that use of Wick’s theorem is surely permitted as long as all reservoirs are
made up by harmonic oscillators.

Our proof is based on the representation (23). We first focus on (A.2). A key role is
played by the identity

Vα1Vα2Vα3Vα4cα1α3cα2α4 = |k1〉〈l4|δk2l1δk3l2δk4l3c(k1l1)(l2l3)c(l1l2)(l3l4), (A.5)

where time arguments are irrelevant. From (34) it follows that the right-hand side of (A.5)
is vanishing at zero temperature. By induction one proves then that the iterative solution
of (A.2) possesses the following two properties: (i) 〈p|Q(t, s)|q〉 equals zero for p �= q, and,
(ii) the fourth-order term figuring in (A.2) does not contribute at all.

Let us now extend (A.2) with irreducible graphs of arbitrary order 2n. In that case one
has to implement (34) in the following expression:

Vα1Vα2Vα3Vα4 · · ·Vα2n
cαj1 αj2

cαj3 αj4
· · · cαj2n−1 αj2n

. (A.6)

The product of correlation functions corresponds to an irreducible graph consisting of n
pairs. Elementary topological analysis shows that this graph always contains a segment
{m,m + n}�n−1

j=1{m + j, pj }, with n � 2 and pj > m + n for all j . To the irreducible graph
{13}{25}{46} the choice m = 1, n = 2, and p1 = 5 applies. With the help of (23) and the
choice αj → (kj lj ) we find that the afore-mentioned segment generates a product

c(kmlm)(lm+n−1lm+n)c(lmlm+1)(···)c(lm+1lm+2)(···) · · · c(lm+n−2lm+n−1)(···). (A.7)

As in (A.5), the orthogonality of the states {|k〉} has been exploited. Since the temperature
is at absolute zero, the inequalities lm > lm+1 > lm+2 · · · > lm+n−2 > lm+n−1 must hold true.
On the other hand, (34) prescribes that one must choose lm+n−1 = lm in the first correlation
function. This leaves us only one option: we have to conclude that the form (A.6) equals zero
for n � 2.

Making use of induction, one proves that the iterative solution for Q(t, s) is diagonal and
independent of the graph (A.6). In other words, (9) is exact if (34) is valid and the temperature
equals zero. The same statement can be proved for (12) by means of similar techniques as
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outlined above. The diagonals 〈p|ξ(t, t ′)|p〉 and off-diagonals 〈p|ξ(t, t ′)|q〉, with p �= q,
must be treated separately. In order to gain some expertise in structuring the proofs, it is
recommendable to first prove that (A.3) is equivalent to (12) under the assumptions stated
above.
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